The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist

نویسندگان

  • Garret Suen
  • Paul J. Weimer
  • David M. Stevenson
  • Frank O. Aylward
  • Julie Boyum
  • Jan Deneke
  • Colleen Drinkwater
  • Natalia N. Ivanova
  • Natalia Mikhailova
  • Olga Chertkov
  • Lynne A. Goodwin
  • Cameron R. Currie
  • David Mead
  • Phillip J. Brumm
چکیده

Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional annotation of Fibrobacter succinogenes S85 carbohydrate active enzymes.

Fibrobacter succinogenes is a cellulolytic bacterium that degrades plant cell wall biomass in ruminant animals and is among the most rapidly fibrolytic of all mesophilic bacteria. The complete genome sequence of Fisuc was completed by the DOE Joint Genome Institute in late 2009. Using new expression tools developed at Lucigen and C5-6 Technologies and a multi-substrate screen, 5,760 random shot...

متن کامل

Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85.

Fibrobacter succinogenes is one of the most active cellulolytic bacteria ever isolated from the rumen, but enzymes from F. succinogenes capable of hydrolyzing native (insoluble) cellulose at a rapid rate have not been identified. However, the genome sequence of F. succinogenes is now available, and it was hoped that this information would yield new insights into the mechanism of cellulose diges...

متن کامل

Fiber-degrading systems of different strains of the genus Fibrobacter.

The S85 type strain of Fibrobacter succinogenes, a major ruminal fibrolytic species, was isolated 49 years ago from a bovine rumen and has been used since then as a model for extensive studies. To assess the validity of this model, we compared the cellulase- and xylanase-degrading activities of several other F. succinogenes strains originating from different ruminants, including recently isolat...

متن کامل

Molecular beacons: trial of a fluorescence-based solution hybridization technique for ecological studies with ruminal bacteria.

Molecular beacons are fluorescent probes developed for solution rather than membrane hybridization. We have investigated the utility of these probes to study rumen microbial ecology. Two cellulolytic species, Ruminococcus albus and Fibrobacter succinogenes, were tested. Membrane and solution hybridizations gave similar results in competition experiments with cocultures of R. albus 8 and F. succ...

متن کامل

Evaluating Models of Cellulose Degradation by Fibrobacter succinogenes S85

Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011